Coefficient Bounds for a Certain Class of Analytic and Bi-Univalent Functions

H. M. Srivastava ${ }^{\text {a }}$, Sevtap Sümer Eker ${ }^{\text {b }}$, Rosihan M. Ali ${ }^{\text {c }}$
${ }^{a}$ Department of Mathematics and Statistics, University of Victoria, Victoria, British Columbia V8W 3R4, Canada
${ }^{b}$ Department of Mathematics, Faculty of Science, Dicle University, TR-21280 Diyarbakır, Turkey
${ }^{c}$ School of Mathematical Sciences, Universiti Sains Malaysia, 11800 USM Penang, Malaysia

Abstract

In this paper, we introduce and investigate a subclass of analytic and bi-univalent functions in the open unit disk \mathbb{U}. By using the Faber polynomial expansions, we obtain upper bounds for the coefficients of functions belonging to this analytic and bi-univalent function class. ome interesting recent developments involving other subclasses of analytic and bi-univalent functions are also briefly mentioned.

1. Introduction

Let \mathcal{A} denote the class of functions $f(z)$ which are analytic in the open unit disk

$$
\mathbb{U}=\{z: z \in \mathbb{C} \quad \text { and } \quad|z|<1\}
$$

and normalized by the following Taylor-Maclaurin series expansion:

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \tag{1.1}
\end{equation*}
$$

Also let \mathcal{S} denote the subclass of functions in \mathcal{A} which are univalent in \mathbb{U} (see, for details, [8]).
It is well known that every function $f \in \mathcal{S}$ has an inverse f^{-1}, which is defined by

$$
f^{-1}(f(z))=z \quad(z \in \mathbb{U})
$$

and

$$
\begin{equation*}
f\left(f^{-1}(w)\right)=w \quad\left(|w|<r_{0}(f) ; r_{0}(f) \geqq \frac{1}{4}\right) \tag{1.2}
\end{equation*}
$$

[^0]according to the Koebe One-Quarter Theorem (see, for example, [8]). In fact, the inverse function f^{-1} is given by
\[

$$
\begin{align*}
f^{-1}(w)=w-a_{2} w^{2} & +\left(2 a_{2}^{2}-a_{3}\right) w^{3} \\
& -\left(5 a_{2}^{3}-5 a_{2} a_{3}+a_{4}\right) w^{4}+\cdots \tag{1.3}
\end{align*}
$$
\]

A function $f \in \mathcal{A}$ is said to be bi-univalent in \mathbb{U} if both $f(z)$ and $f^{-1}(z)$ are univalent in \mathbb{U}. Let Σ denote the class of analytic and bi-univalent functions in \mathbb{U} given by the Taylor-Maclaurin series expansion (1.1). Some examples of functions in the class Σ are presented below:

$$
\frac{z}{1-z}, \quad-\log (1-z), \quad \frac{1}{2} \log \left(\frac{1+z}{1-z}\right)
$$

and so on. However, the familiar Koebe function is not a member of the class Σ. Other common examples of functions in \mathcal{S} such as

$$
z-\frac{z^{2}}{2} \quad \text { and } \quad \frac{z}{1-z^{2}}
$$

are also not members of the class Σ.
For a brief history of functions in the class Σ, see [22] (see also [4], [14], [18] and [25]). In fact, judging by the remarkable flood of papers on the subject (see, for example, [5-7, 9-12, 15-17, 19-21, 23, 26, 27, 29, 30]), the recent pioneering work of Srivastava et al.[22] appears to have revived the study of analytic and bi-univalent functions in recent years (see also [3], [13] and [24]).

The object of the present paper is to introduce a new subclass of the function class Σ and use the Faber polynomial expansion techniques to derive bounds for the general Taylor-Maclaurin coefficients $\left|a_{n}\right|$ for the functions in this class. We also obtain estimates for the first two coefficients $\left|a_{2}\right|$ and $\left|a_{3}\right|$ of these functions.

2. Bounds Derivable by the Faber Polynomial Expansion Techniques

We begin by introducing the function class $\mathcal{N}_{\Sigma}^{(\alpha, \lambda)}$ by means of the following definition.
Definition. A function $f(z)$ given by (1.1) is said to be in the class $\mathcal{N}_{\Sigma}^{(\alpha, \lambda)}(0 \leqq \alpha<1 ; \lambda \geqq 0)$ if the following conditions are satisfied:

$$
\begin{equation*}
f \in \Sigma \quad \text { and } \quad \mathfrak{R}\left\{f^{\prime}(z)+\lambda z f^{\prime \prime}(z)\right\}>\alpha \quad(z \in \mathbb{U} ; 0 \leqq \alpha<1 ; \lambda \geqq 0) \tag{2.1}
\end{equation*}
$$

By using the Faber polynomial expansions of functions $f \in \mathcal{A}$ of the form (1.1), the coefficients of its inverse map $g=f^{-1}$ may be expressed as follows (see [1] and [2]; see also [12]):

$$
\begin{equation*}
g(w)=f^{-1}(w)=w+\sum_{n=2}^{\infty} \frac{1}{n} K_{n-1}^{-n}\left(a_{2}, a_{3}, \cdots, a_{n}\right) w^{n} \tag{2.2}
\end{equation*}
$$

where

$$
\begin{aligned}
K_{n-1}^{-n}= & \frac{(-n)!}{(-2 n+1)!(n-1)!} a_{2}^{n-1}+\frac{(-n)!}{(2(-n+1))!(n-3)!} a_{2}^{n-3} a_{3} \\
& +\frac{(-n)!}{(-2 n+3)!(n-4)!} a_{2}^{n-4} a_{4} \\
& +\frac{(-n)!}{(2(-n+2))!(n-5)!} a_{2}^{n-5}\left[a_{5}+(-n+2) a_{3}^{2}\right] \\
& +\frac{(-n)!}{(-2 n+5)!(n-6)!} a_{2}^{n-6}\left[a_{6}+(-2 n+5) a_{3} a_{4}\right]+\sum_{j \geqq 7} a_{2}^{n-j} V_{j},
\end{aligned}
$$

where such expressions as (for example) ($-n$)! are to be interpreted symbolically by

$$
\begin{equation*}
(-n)!\equiv \Gamma(1-n):=(-n)(-n-1)(-n-2) \cdots \quad\left(n \in \mathbb{N}_{0}:=\mathbb{N} \cup\{0\} \quad(\mathbb{N}:=\{1,2,3, \cdots\})\right) \tag{2.3}
\end{equation*}
$$

and $V_{j}(7 \leqq j \leqq n)$ is a homogeneous polynomial in the variables $a_{2}, a_{3}, \cdots, a_{n}$ (see, for details, [2]). In particular, the first three terms of K_{n-1}^{-n} are given below:

$$
\begin{aligned}
& K_{1}^{-2}=-2 a_{2}, \\
& K_{2}^{-3}=3\left(2 a_{2}^{2}-a_{3}\right)
\end{aligned}
$$

and

$$
K_{3}^{-4}=-4\left(5 a_{2}^{3}-5 a_{2} a_{3}+a_{4}\right)
$$

In general, an expansion of K_{n}^{p} is given by (see, for details, [1])

$$
K_{n}^{p}=p a_{n}+\frac{p(p-1)}{2} D_{n}^{2}+\frac{p!}{(p-3)!3!} D_{n}^{3}+\cdots+\frac{p!}{(p-n)!n!} D_{n}^{n} \quad(p \in \mathbb{Z})
$$

where

$$
\mathbb{Z}:=\{0, \pm 1, \pm 2, \cdots\} \quad \text { and } \quad D_{n}^{p}=D_{n}^{p}\left(a_{2}, a_{3}, \cdots\right)
$$

and, alternatively, by (see, for details, [28])

$$
D_{n}^{m}\left(a_{1}, a_{2}, \cdots, a_{n}\right)=\sum\left(\frac{m!}{\mu_{1}!\cdots \mu_{n}!}\right) a_{1}^{\mu_{1}} \cdots a_{n}^{\mu_{n}}
$$

where $a_{1}=1$ and the sum is taken over all nonnegative integers μ_{1}, \cdots, μ_{n} satisfying the following conditions:

$$
\left\{\begin{array}{l}
\mu_{1}+\mu_{2}+\cdots+\mu_{n}=m \\
\mu_{1}+2 \mu_{2}+\cdots+n \mu_{n}=n
\end{array}\right.
$$

It is clear that

$$
D_{n}^{n}\left(a_{1}, a_{2}, \cdots, a_{n}\right)=a_{1}^{n}
$$

Our first main result is given by Theorem 1 below.

Theorem 1. Let f given by (1.1) be in the class $\mathcal{N}_{\Sigma}^{\alpha, \lambda}(0 \leqq \alpha<1$ and $\lambda \geqq 0)$. If $a_{k}=0$ for $2 \leqq k \leqq n-1$, then

$$
\begin{equation*}
\left|a_{n}\right| \leqq \frac{2(1-\alpha)}{n[1+\lambda(n-1)]} \quad(n \in \mathbb{N} \backslash\{1,2\}) . \tag{2.4}
\end{equation*}
$$

Proof. For analytic functions f of the form (1.1), we have

$$
\begin{equation*}
f^{\prime}(z)+\lambda z f^{\prime \prime}(z)=1+\sum_{n=2}^{\infty}[1+\lambda(n-1)] n a_{n} z^{n-1} \tag{2.5}
\end{equation*}
$$

and, for its inverse map $g=f^{-1}$, it is seen that

$$
\begin{align*}
g^{\prime}(w)+\lambda w g^{\prime \prime}(w) & =1+\sum_{n=2}^{\infty}[1+\lambda(n-1)] n b_{n} w^{n-1} \\
& =1+\sum_{n=2}^{\infty}[1+\lambda(n-1)] K_{n-1}^{-n}\left(a_{2}, a_{3}, \cdots, a_{n}\right) w^{n-1} \tag{2.6}
\end{align*}
$$

On the other hand, since $f \in \mathcal{N}_{\Sigma}^{\alpha, \lambda}$ and $g=f^{-1} \in \mathcal{N}_{\Sigma}^{\alpha, \lambda}$, by definition, there exist two positive real-part functions

$$
\mathfrak{p}(z)=1+\sum_{n=1}^{\infty} c_{n} z^{n}
$$

and

$$
\mathfrak{q}(w)=1+\sum_{n=1}^{\infty} d_{n} w^{n}
$$

where

$$
\mathfrak{R}(\mathfrak{p}(z))>0 \quad \text { and } \quad \mathfrak{R}(\mathfrak{q}(w))>0 \quad(z, w \in \mathbb{U})
$$

so that

$$
\begin{align*}
f^{\prime}(z)+\lambda z f^{\prime \prime}(z) & =\alpha+(1-\alpha) \mathfrak{p}(z) \\
& =1+(1-\alpha) \sum_{n=1}^{\infty} K_{n}^{1}\left(c_{1}, c_{2}, \cdots, c_{n}\right) z^{n} \tag{2.7}
\end{align*}
$$

and

$$
\begin{align*}
g^{\prime}(w)+\lambda w g^{\prime \prime}(w) & =\alpha+(1-\alpha) \mathfrak{q}(w) \\
& =1+(1-\alpha) \sum_{n=1}^{\infty} K_{n}^{1}\left(d_{1}, d_{2}, \cdots, d_{n}\right) w^{n} \tag{2.8}
\end{align*}
$$

Thus, upon comparing the corresponding coefficients in (2.5) and (2.7), we get

$$
\begin{equation*}
[1+\lambda(n-1)] n a_{n}=(1-\alpha) K_{n-1}^{1}\left(c_{1}, c_{2}, \cdots, c_{n-1}\right) \tag{2.9}
\end{equation*}
$$

Similarly, by using (2.6) and (2.8), we find that

$$
\begin{equation*}
[1+\lambda(n-1)] K_{n-1}^{-n}\left(a_{1}, a_{2}, \cdots, a_{n}\right)=(1-\alpha) K_{n-1}^{1}\left(d_{1}, d_{2}, \cdots, d_{n-1}\right) \tag{2.10}
\end{equation*}
$$

We note that, for $a_{k}=0(2 \leqq k \leqq n-1)$, we have

$$
b_{n}=-a_{n}
$$

and so

$$
\begin{equation*}
[1+\lambda(n-1)] n a_{n}=(1-\alpha) c_{n-1} \tag{2.11}
\end{equation*}
$$

and

$$
\begin{equation*}
-[1+\lambda(n-1)] n a_{n}=(1-\alpha) d_{n-1} \tag{2.12}
\end{equation*}
$$

Thus, according to the Carathéodory Lemma (see [8]), we also observe that

$$
\left|c_{n}\right| \leqq 2 \quad \text { and } \quad\left|d_{n}\right| \leqq 2 \quad(n \in \mathbb{N})
$$

Now, taking the moduli in (2.11) and (2.12) and applying the Carathéodory Lemma, we obtain

$$
\begin{equation*}
\left|a_{n}\right| \leqq \frac{(1-\alpha)\left|c_{n-1}\right|}{n[1+\lambda(n-1)]}=\frac{(1-\alpha)\left|d_{n-1}\right|}{n[1+\lambda(n-1)]} \leqq \frac{2(1-\alpha)}{n[1+\lambda(n-1)]}, \tag{2.13}
\end{equation*}
$$

which evidently completes the proof of Theorem 1.

3. Estimates for the Initial Coefficients a_{2} and a_{3}

In this section, we choose to relax the coefficient restrictions imposed in Theorem 1 and derive the resulting estimates for the initial coefficients a_{2} and a_{3} of functions $f \in \mathcal{N}_{\Sigma}^{\alpha, \lambda}$ given by the Taylor-Maclaurin series expansion (1.1). We first state the following theorem.

Theorem 2. Let f given by (1.1) be in the class $\mathcal{N}_{\Sigma}^{\alpha, \lambda}(0 \leqq \alpha<1$ and $\lambda \geqq 0)$. Then

$$
\left|a_{2}\right| \leqq \begin{cases}\sqrt{\frac{2(1-\alpha)}{3(1+2 \lambda)}}, & 0 \leqq \alpha<\frac{1+2 \lambda-2 \lambda^{2}}{3(1+2 \lambda)} \tag{3.1}\\ \frac{1-\alpha}{1+\lambda}, & \frac{1+2 \lambda-2 \lambda^{2}}{3(1+2 \lambda)} \leqq \alpha<1\end{cases}
$$

and

$$
\begin{equation*}
\left|a_{3}\right| \leqq \frac{2(1-\alpha)}{3(1+2 \lambda)} \tag{3.2}
\end{equation*}
$$

Proof. If we set $n=2$ by and $n=3$ in (2.9) and (2.10), respectively, we obtain

$$
\begin{align*}
& 2(1+\lambda) a_{2}=(1-\alpha) c_{1} \tag{3.3}\\
& 3(1+2 \lambda) a_{3}=(1-\alpha) c_{2} \tag{3.4}\\
& -2(1+\lambda) a_{2}=(1-\alpha) d_{1} \tag{3.5}
\end{align*}
$$

and

$$
\begin{equation*}
3(1+2 \lambda)\left(2 a_{2}^{2}-a_{3}\right)=(1-\alpha) d_{2} \tag{3.6}
\end{equation*}
$$

Upon dividing both sides of (3.3) or (3.5) by $2(1+\lambda)$, if we take their moduli and apply the Carathéodory Lemma, we find that

$$
\begin{equation*}
\left|a_{2}\right| \leqq \frac{(1-\alpha)\left|c_{1}\right|}{2(1+\lambda)}=\frac{(1-\alpha)\left|d_{1}\right|}{2(1+\lambda)} \leqq \frac{1-\alpha}{1+\lambda} . \tag{3.7}
\end{equation*}
$$

Now, by adding (3.4) to (3.6), we have

$$
\begin{equation*}
6(1+2 \lambda) a_{2}^{2}=(1-\alpha)\left(c_{2}+d_{2}\right) \tag{3.8}
\end{equation*}
$$

that is,

$$
\begin{equation*}
a_{2}^{2}=\frac{(1-\alpha)\left(c_{2}+d_{2}\right)}{6(1+2 \lambda)} \tag{3.9}
\end{equation*}
$$

Another application of the Carathéodory Lemma followed by taking the square roots in this last equation (3.9) yields

$$
\begin{equation*}
\left|a_{2}\right| \leqq \sqrt{\frac{2(1-\alpha)}{3(1+2 \lambda)}} \tag{3.10}
\end{equation*}
$$

which proves the first assertion (3.1) of Theorem 2.
Next, for

$$
\frac{1+2 \lambda-2 \lambda^{2}}{3(1+2 \lambda)} \leqq \alpha<1
$$

we note that

$$
\begin{equation*}
\frac{1-\alpha}{1+\lambda} \leqq \sqrt{\frac{2(1-\alpha)}{3(1+2 \lambda)}} \tag{3.11}
\end{equation*}
$$

Thus, upon dividing both sides of (3.4) by $3(1+2 \lambda)$, if we take the modulus of each side and apply the Carathéodory Lemma once again, we get

$$
\begin{equation*}
\left|a_{3}\right| \leqq \frac{2(1-\alpha)}{3(1+2 \lambda)} \tag{3.12}
\end{equation*}
$$

which completes the proof of the second assertion (3.2) of Theorem 2.

References

[1] H. Airault and A. Bouali, Differential calculus on the Faber polynomials, Bull. Sci. Math. 130 (2006), 179-222.
[2] H. Airault and J.-G. Ren, An algebra of differential operators and generating functions on the set of univalent functions, Bull. Sci. Math. 126 (2002), 343-367.
[3] R. M. Ali, S. K. Lee, V. Ravichandran and S. Supramaniam, Coefficient estimates for bi-univalent Ma-Minda starlike and convex functions, Appl. Math. Lett. 25 (2012), 344-351.
[4] D. A. Brannan and T. S. Taha, On some classes of bi-univalent functions, in Mathematical Analysis and Its Applications (S. M. Mazhar, A. Hamoui and N. S. Faour, Editors) (Kuwait; February 18-21, 1985), KFAS Proceedings Series, Vol. 3, Pergamon Press (Elsevier Science Limited), Oxford, 1988, pp. 53-60; see also Studia Univ. Babeş-Bolyai Math. 31 (2) (1986) 70-77.
[5] S. Bulut, Coefficient estimates for a class of analytic and bi-univalent functions, Novi Sad J. Math. 43 (2) (2013), 59-65.
[6] M. Çağlar, H. Orhan and N. Yağmur, Coefficient bounds for new subclasses of bi-univalent functions, Filomat 27 (2013), $1165-1171$.
[7] E. Deniz, Certain subclasses of bi-univalent functions satisfying subordinate conditions, J. Class. Anal. 2 (2013), 49-60.
[8] P. L. Duren, Univalent Functions, Grundlehren der Mathematischen Wissenschaften, Band 259, Springer-Verlag, New York, Berlin, Heidelberg and Tokyo, 1983.
[9] B. A. Frasin and M. K. Aouf, New subclasses of bi-univalent functions, Appl. Math. Lett. 24 (2011), 1569-1573.
[10] S. P. Goyal and P.Goswami, Estimate for initial Maclaurin coefficients of bi-univalent functions for a class defined by fractional derivatives, J. Egyptian Math. Soc. 20 (2012), 179-182.
[11] T. Hayami and S. Owa, Coefficient bounds for bi-univalent functions, Pan Amer. Math. J. 22 (4) (2012), 15-26.
[12] J. M. Jahangiri and S. G. Hamidi, Coefficient estimates for certain classes of bi-univalent functions, Internat. J. Math. Math. Sci. 2013 (2013), Article ID 190560, 1-4.
[13] A. W. Kedzierawski, Some remarks on bi-univalent functions, Ann. Univ. Mariae Curie-Skłodowska Sect. A 39 (1985), 77-81.
[14] M. Lewin, On a coefficient problem for bi-univalent functions, Proc. Amer. Math. Soc. 18 (1967), 63-68.
[15] X.-F. Li and A.-P. Wang, Two new subclasses of bi-univalent functions, Internat. Math. Forum 7 (2012), 1495-1504.
[16] N. Magesh and J. Yamini, Coefficient bounds for certain subclasses of bi-univalent functions, Internat. Math. Forum 8 (2013), 1337-1344.
[17] G. Murugusundaramoorthy, N. Magesh and V. Prameela, Coefficient bounds for certain subclasses of bi-univalent functions, Abstr. Appl. Anal. 2013 (2013), Article ID 573017, 1-3.
[18] E. Netanyahu, The minimal distance of the image boundary from the origin and the second coefficient of a univalent function in $|z|<1$, Arch. Rational Mech. Anal. 32 (1969), 100-112.
[19] Z.-G. Peng and Q.-Q. Han, On the coefficients of several classes of bi-univalent functions, Acta Math. Sci. Ser. B Engl. Ed. 34 (2014), 228-240.
[20] H. M. Srivastava, Some inequalities and other results associated with certain subclasses of univalent and bi-univalent analytic functions, in: Nonlinear Analysis: Stability, Approximation, and Inequalities (Panos M. Pardalos, Pando G. Georgiev and Hari M. Srivastava, Editors.), Springer Series on Optimization and Its Applications, Vol. 68, Springer-Verlag, Berlin, Heidelberg and New York, 2012, pp. 607-630.
[21] H. M. Srivastava, S. Bulut, M. Çağlar and N. Yağmur, Coefficient estimates for a general subclass of analytic and bi-univalent functions, Filomat 27 (2013), 831-842.
[22] H. M. Srivastava, A. K. Mishra and P. Gochhayat, Certain subclasses of analytic and bi-univalent functions, Appl. Math. Lett. 23 (2010), 1188-1192.
[23] H. M. Srivastava, G. Murugusundaramoorthy and N. Magesh, Certain subclasses of bi-univalent functions associated with the Hohlov operator, Global J. Math. Anal. 1 (2) (2013), 67-73.
[24] D. Styer and J. Wright, Result on bi-univalent functions, Proc. Amer. Math. Soc. 82 (1981), 243-248.
[25] T. S. Taha, Topics in Univalent Function Theory, Ph.D. Thesis, University of London, 1981.
[26] D.-L. Tan, Coefficient estimates for bi-univalent functions, Chinese Ann. Math. Ser. A 5 (1984), 559-568.
[27] H. Tang, G.-T. Deng and S.-H. Li, Coefficient estimates for new subclasses of Ma-Minda bi-univalent functions, J. Inequal. Appl. 2013 (2013), Article ID 317, 1-10.
[28] P. G. Todorov, On the Faber polynomials of the univalent functions of class Σ, J. Math. Anal. Appl. 162 (1991), $268-276$.
[29] Q.-H. Xu, Y.-C. Gui and H. M. Srivastava, Coefficient estimates for a certain subclass of analytic and bi-univalent functions, Appl. Math. Lett. 25 (2012), 990-994.
[30] Q.-H. Xu, H.-G. Xiao and H. M. Srivastava, A certain general subclass of analytic and bi-univalent functions and associated coefficient estimate problems, Appl. Math. Comput. 218 (2012), 11461-11465.

[^0]: 2010 Mathematics Subject Classification. Primary 30C45, 30C50; Secondary 30C80
 Keywords. Analytic functions; Univalent functions; Faber polynomials; Bi-Univalent functions; Taylor-Maclaurin series expansion; Coefficient bounds and coefficient estimates; Taylor-Maclaurin coefficients.

 Received: 06 November 2013; Accepted: 12 April 2014
 Communicated by Dragan S. Djordjević
 Email addresses: harimsri@math.uvic.ca (H. M. Srivastava), sevtaps35@gmail.com (Sevtap Sümer Eker), rosihan@cs.usm.my (Rosihan M. Ali)

